The purpose of the logbook_little_big_control function is to provide a table of data that contains an inconsistency between the percentage of little and big fish sampled

logbook_little_big_control(
  dataframe1,
  dataframe2,
  dataframe3,
  output,
  species_big = c("YFT", "YFT", "BET", "BET", "ALB", "ALB"),
  size_measure_type_big = c("PD1", "FL", "PD1", "FL", "PD1", "FL"),
  threshold_size_big = c(24, 80, 25, 77, 23.5, 78),
  size_measure_type = c("FL", "PD1"),
  threshold = 0.9
)

Arguments

dataframe1

data.frame expected. Csv or output of the function data_extraction, which must be done before using the logbook_little_big_control() function.

dataframe2

data.frame expected. Csv or output of the function data_extraction, which must be done before using the logbook_little_big_control() function.

dataframe3

data.frame expected. Csv or output of the function data_extraction, which must be done before using the logbook_little_big_control() function.

output

character expected. Kind of expected output. You can choose between "message", "report" or "logical".

species_big

character expected. Default values: c("YFT", "YFT", "BET", "BET", "ALB", "ALB"). Vector of the species. First criterion for identifying big fish (other values are small fish)

size_measure_type_big

character expected. Default values: c("PD1", "FL", "PD1", "FL", "PD1", "FL"). Vector of the size measure type. Second criterion for identifying big fish (other values are small fish)

threshold_size_big

numeric expected. Default values: c(24, 80, 25, 77, 23.5, 78). Vector for defining the lower or equal for threshold size measurement. Third criterion for identifying big fish (other values are small fish)

size_measure_type

character expected. Default values: c("FL", "PD1"). Vector with the preferred type of size measurement for small fish and then for big fish

threshold

numeric expected. Default values: 0.9. Threshold for percentage of small or big fish

Value

The function returns a character with output is "message", a data.frame with output is "report", a logical with output is "logical"

Details

The input dataframe must contain all these columns for the function to work :

  • sample_id

  • sample_smallsweight

  • sample_bigsweight

  • sample_totalweight

  • samplespecies_id

  • species_fao_code

  • sizemeasuretype_code

  • sample_id

  • samplespeciesmeasure_id

  • samplespeciesmeasure_sizeclass

  • samplespeciesmeasure_count

  • samplespecies_id

Examples

#Sample 1, 2, 4, 5, 7, 8 and 9 are ok,
#Sample 3 has a percentage of big below the threshold,
#Sample 6 has a percentage of little below the threshold,
#Sample 10 has a percentage of little below the threshold,
#Sample 11 has a percentage of little below the threshold,
#Sample 12 has a percentage of big below the threshold
dataframe1 <- data.frame(sample_id = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11",
                                       "12"),
                         sample_smallsweight = c(10, 20, 1, 30, 3, 7, 4, 12, 0, 0, 3, 0),
                         sample_bigsweight = c(NA, 2, 9, 3, 5, 4, 13, 5, 0, NA, 0, 4),
                         sample_totalweight = c(NA, NA, NA, 33, NA, NA, 7, 2, 0, 5, 0, 0))
dataframe2 <- data.frame(samplespecies_id = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",
                                              "11", "12"),
                         species_fao_code = c("YFT", "BET", "BET", "YFT", "ALB", "YFT", "YFT",
                                              "BET", "YFT", "ALB", "YFT", "YFT"),
                         sizemeasuretype_code = c("PD1", "PD1", "FL","PD1", "FL", "FL", "PD1",
                                                  "FL", "PD1", "PD1", "PD1", "PD1"),
                         sample_id = c("1", "2", "2", "3", "4", "5", "5", "6", "6", "8", "9", "10"))
dataframe3 <- data.frame(samplespeciesmeasure_id = c("1", "2", "3", "4", "5", "6", "7", "8", "9",
                                                     "10", "11", "12"),
                         samplespeciesmeasure_sizeclass = c(20, 26, 70, 20, 10, 45, 36, 30, 32, 24,
                                                            13, 13),
                         samplespeciesmeasure_count = c(5, 1, 9, 8, 10, 25, 2, 16, 4, 3, 6, 6),
                         samplespecies_id = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",
                                              "11", "12"))
logbook_little_big_control(dataframe1, dataframe2, dataframe3, output = "report")
#>    sample_id logical sample_smallsweight sample_bigsweight sample_totalweight
#> 1          1    TRUE                  10                NA                 NA
#> 2         10   FALSE                   0                NA                  5
#> 3         11   FALSE                   3                 0                  0
#> 4         12   FALSE                   0                 4                  0
#> 5          2    TRUE                  20                 2                 NA
#> 6          3   FALSE                   1                 9                 NA
#> 7          4    TRUE                  30                 3                 33
#> 8          5    TRUE                   3                 5                 NA
#> 9          6   FALSE                   7                 4                 NA
#> 10         7    TRUE                   4                13                  7
#> 11         8    TRUE                  12                 5                  2
#> 12         9    TRUE                   0                 0                  0
#>    little_percentage big_percentage measure1_percentage measure2_percentage
#> 1          1.0000000     0.00000000           0.0000000          1.00000000
#> 2          1.0000000     0.00000000           0.0000000          1.00000000
#> 3          0.0000000     0.00000000           0.0000000          0.00000000
#> 4          0.0000000     0.00000000           0.0000000          0.00000000
#> 5          0.9000000     0.10000000           0.9000000          0.10000000
#> 6          1.0000000     0.00000000           0.0000000          1.00000000
#> 7          1.0000000     0.00000000           1.0000000          0.00000000
#> 8          0.9259259     0.07407407           0.9259259          0.07407407
#> 9          0.8000000     0.20000000           0.8000000          0.20000000
#> 10         0.0000000     0.00000000           0.0000000          0.00000000
#> 11         0.0000000     1.00000000           0.0000000          1.00000000
#> 12         1.0000000     0.00000000           0.0000000          1.00000000