The purpose of the logbook_weighting_control function is to provide a table of data that contains an inconsistency between the sample weighting

logbook_weighting_control(
  dataframe1,
  dataframe2,
  dataframe3,
  dataframe4,
  output,
  vessel_type = c("6", "2"),
  threshold_weight = 100,
  threshold_ratio = 0.95,
  sample_type_code_landing_baitboat = c("11"),
  landing_type_baitboat = c("L-YFT-10", "L-BET-10", "L-TUN-10"),
  threshold_baitboat = 1
)

Arguments

dataframe1

data.frame expected. Csv or output of the function data_extraction, which must be done before using the logbook_weighting_control () function.

dataframe2

data.frame expected. Csv or output of the function data_extraction, which must be done before using the logbook_weighting_control () function.

dataframe3

data.frame expected. Csv or output of the function data_extraction, which must be done before using the logbook_weighting_control () function.

dataframe4

data.frame expected. Csv or output of the function data_extraction, which must be done before using the logbook_weighting_control () function.

output

character expected. Kind of expected output. You can choose between "message", "report" or "logical".

vessel_type

character expected. Default values: c("6", "2"). List of two elements, the first is the seine vessel type code, and the second is the baitboat type code.

threshold_weight

numeric expected. Default values: 100. Seiner threshold weight

threshold_ratio

numeric expected. Default values: 0.95. Percentage threshold between weight and weighted weight for seiners

sample_type_code_landing_baitboat

character expected. Default values: c("11"). List of sample type codes for baitboat fresh landings

landing_type_baitboat

character expected. Default values: c("L-YFT-10", "L-BET-10", "L-TUN-10"). List of codes for fresh baitboat landings

threshold_baitboat

numeric expected. Default values: 1. Threshold for baitboats with respect to the difference between the weighted weight and the landed fresh weight and the difference between the weight and the weighted weight

Value

The function returns a character with output is "message", a data.frame with output is "report", a logical with output is "logical"

Details

The input dataframe must contain all these columns for the function to work :

  • sample_id

  • sample_smallsweight

  • sample_bigsweight

  • sample_totalweight

  • trip_id

  • sampletype_code

  • sampleactivity_id

  • sampleactivity_weightedweight

  • sample_id

  • trip_id

  • vesseltype_code

  • vesseltype_label1

  • landing_id

  • landing_weight

  • weightcategory_code

  • trip_id

Examples

#Sample 1, 3, 4, 7, 9, 12, 17 and 18 are ok,
#Sample 2 has a weighted weight ratio over the sum of the weights of small and big individuals below
#         the threshold (threshold_ratio),
#Sample 5 has a difference between fresh landing and weighted weight above the
#         threshold (threshold_baitboat),
#Sample 6 has no vessel type,
#Sample 8 has no sample type,
#Sample 10 has no sample activity,
#Sample 11 has a difference between total weight and weighted weight above the
#          threshold (threshold_baitboat),
#Sample 13 has no sample activity,
#Sample 14 has a difference between sum of the weights of small and big individuals and weighted
#          weight above the threshold (threshold_baitboat),
#Sample 15 has the sum of the weights of small and big individuals above the
#          threshold (threshold_weight),
#Sample 16 has the sum of the total weight above the threshold (threshold_weight),
#Sample 19 has a weighted weight ratio over the total weight below the threshold (threshold_ratio)
dataframe1 <- data.frame(sample_id = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11",
                                       "12", "13", "14", "15", "16", "17", "18", "19"),
                         sample_smallsweight = c(10, 32, 2.5, 30, 12, 7, NA, 6, NA, 4, 8, 3, 7, 13,
                                                 54, 3, 8, 2, 16),
                         sample_bigsweight = c(50, 2, 9, 3, 6, 13, 0, 3, 7, 2, 0, 2, 8, 3, 62, 8,
                                               15, 6, 1),
                         sample_totalweight = c(NA, NA, NA, 33, 8, 9, 142, 2, 14, 10, 3, 0, NA, 0,
                                                0, 104, 24, 36, 12),
                         trip_id =  c("1", "1", "2", "3", "4", "5", "6", "7", "8", "8", "8", "8",
                                      "8", "8", "1", "1", "1", "1", "1"),
                         sampletype_code = c("1", "1", "1", "11", "11", "1", "1", NA, "1", "1", "1",
                                             "1", "1", "1", "1", NA, NA, NA, NA))
dataframe2 <- data.frame(sampleactivity_id = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10",
                                              "11", "12", "13", "14", "15", "16", "17"),
                         sampleactivity_weightedweight = c(70, 5, 18, 12, 33, 5, 9, 4, 13, 7, 4, 15,
                                                           116, 104, 24, 35, 11),
                         sample_id = c("1", "1", "2", "3", "4", "5", "6", "8", "9", "11", "12",
                                       "14", "15", "16", "17", "18", "19"))
dataframe3 <- data.frame(trip_id = c("1", "2", "3", "4", "6", "7", "8"),
                         vesseltype_code = c("6", "6", "2", "2", "3", "2", "2"),
                         vesseltype_label = c("vessel_type_1", "vessel_type_1", "vessel_type_2",
                                              "vessel_type_2", "vessel_type_3", "vessel_type_2",
                                              "vessel_type_2"))
dataframe4 <- data.frame(landing_id = c("1", "2", "3", "4", "5", "6"),
                         landing_weight = c(85, 26, 30, 2.6, 20, 3),
                         weightcategory_code = c("W-1", "W-1", "L-YFT-10", "L-YFT-10", "L-YFT-10",
                                                 "L-BET-10"),
                         trip_id = c("1", "2", "3", "3", "4", "7"))
logbook_weighting_control(dataframe1, dataframe2, dataframe3, dataframe4, output = "report")
#>    sample_id logical sample_smallsweight sample_bigsweight sample_totalweight
#> 1          1    TRUE                10.0                50                 NA
#> 2          2   FALSE                32.0                 2                 NA
#> 3          3    TRUE                 2.5                 9                 NA
#> 4          4    TRUE                30.0                 3                 33
#> 5          5   FALSE                12.0                 6                  8
#> 6          6   FALSE                 7.0                13                  9
#> 7          7    TRUE                  NA                 0                142
#> 8          8   FALSE                 6.0                 3                  2
#> 9          9    TRUE                  NA                 7                 14
#> 10        10   FALSE                 4.0                 2                 10
#> 11        11   FALSE                 8.0                 0                  3
#> 12        12    TRUE                 3.0                 2                  0
#> 13        13   FALSE                 7.0                 8                 NA
#> 14        14    TRUE                13.0                 3                  0
#> 15        15   FALSE                54.0                62                  0
#> 16        16   FALSE                 3.0                 8                104
#> 17        17    TRUE                 8.0                15                 24
#> 18        18    TRUE                 2.0                 6                 36
#> 19        19   FALSE                16.0                 1                 12
#>    sampletype_code weightedweight vesseltype_label sum_landing_weight_baitboat
#> 1                1             75    vessel_type_1                          NA
#> 2                1             18    vessel_type_1                          NA
#> 3                1             12    vessel_type_1                          NA
#> 4               11             33    vessel_type_2                        32.6
#> 5               11              5    vessel_type_2                        20.0
#> 6                1              9             <NA>                          NA
#> 7                1             NA    vessel_type_3                          NA
#> 8             <NA>              4    vessel_type_2                         3.0
#> 9                1             13    vessel_type_2                          NA
#> 10               1             NA    vessel_type_2                          NA
#> 11               1              7    vessel_type_2                          NA
#> 12               1              4    vessel_type_2                          NA
#> 13               1             NA    vessel_type_2                          NA
#> 14               1             15    vessel_type_2                          NA
#> 15               1            116    vessel_type_1                          NA
#> 16            <NA>            104    vessel_type_1                          NA
#> 17            <NA>             24    vessel_type_1                          NA
#> 18            <NA>             35    vessel_type_1                          NA
#> 19            <NA>             11    vessel_type_1                          NA